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56 2 Green’s Functions at Zero Temperature

Fig. 2.2 Fermi surface and Fermi sphere

Now we can turn to the building of such a theory in the many-body case. We will
begin with the case of single-component normal, uniform, and homogeneous Fermi
and Bose system (the above-mentioned textbook case) at zero temperature.

This is the simplest possible and practically important case, since it does not
involve superfluid (superconducting) condensate. (The discussion of the latter we
postpone until Chap. 4.) In the Fermi case it applies to nonsuperconducting metals
and semiconductors—if we forget for a while about the subtleties of band structures.
Alkali metals are especially good examples (Fig. 2.2).

In the Bose case the example seems purely academic (since bosons must undergo
Bose condensation at zero) until we recall that there is at least one practically impor-
tant system of bosons that don’t condense: phonons! (This is because the number of
phonons is not conserved, but this is not important when we use the grand potential
formalism.)

In Chap. 1 we introduced the one-particle propagator

K (x, t; x √, t √) = 〈
x |S(t, t √)|x √〉 = 〈

xt |x √t √
〉

as a transmission amplitude of a particle between points (x √, t √) and (x, t). A
straightforward generalization of the former expression is a matrix element of the
N -particle S-operator

〈
�|S(t, t √)|�√〉. Unfortunately, it is useless, since it a involves

transmission amplitude involving N → 1023 particles. On the other hand, the one-
particle propagator in the latter form suggests that we could look at two states with
a single particle excited,

http://dx.doi.org/10.1007/978-3-319-07049-0_4
http://dx.doi.org/10.1007/978-3-319-07049-0_1
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Fig. 2.1 Quasiparticles in the Fermi system

There is no contradiction here. In Chap. 1 we have seen how interactions “dress”
a bare particle, making of it a quasiparticle; here we see it being made in two steps.
The first step (a right choice of the basic set of one-particle states) is made without
addressing any perturbation theory, usually based on symmetry considerations (or
common physical sense), as when translation symmetry of the crystal lattice forces
us to describe otherwise free electrons in terms of Bloch functions instead of simple
plane waves, and we use the concept of phonons as a more adequate description of
low-energy dynamics of the ions. Once chosen, this set of states (“basic quasipar-
ticles,” if you wish) plays the very same role as the states of free particles in the
absence of an external potential, and these two sets of states have a lot in common.
For example, they live infinitely long (because by definition they have definite energy,
Eλ j = E jλ j . If—as is the case in most books—we are dealing with a “liquid” of
interacting fermions on a uniform background, the most natural choice of “basic
quasiparticles” is real particles.

Therefore, later on we will call them simply “particles”, while reserving the term
“quasiparticles” (or “elementary excitations”) par excellence for the ones “dressed”
due to interactions with other particles. (The assumption that the description of
the Fermi liquid can be based on the picture of a weakly interacting gas of such
quasifermions was in the foundation of Landau’s phenomenological theory.)

http://dx.doi.org/10.1007/978-3-319-07049-0_1



